
Temporal Geo-Social Personalized Search Over Streaming Data∗

Abdulaziz Almaslukha,b Amr Magdya,b
aDepartment of Computer Science and Engineering, bCenter for Geospatial Sciences

University of California, Riverside
aalma021@ucr.edu,amr@cs.ucr.edu

ABSTRACT
The unprecedented rise of social media platforms, combined with
location-aware technologies, has led to continuously producing a
significant amount of geo-social data that flows as a user-generated
data stream. This data has been exploited in several important use
cases in various application domains. This paper supports geo-
social personalized queries in streaming data environments that
have not been addressed in the existing literature. We define two
temporal geo-social queries that provide users with real-time per-
sonalized answers based on their social graph. Then, we propose
an indexing framework that provides lightweight and effective real-
time indexing to digest geo-social data in real time. The framework
distinguishes highly-dynamic data from relatively-stable data and
uses appropriate data structures and storage tier for each. Based
on this framework, we propose a novel geo-social index and adopt
two baseline indexes to support the addressed queries. The query
processor then employs different types of pruning to efficiently
access the index content and provide real-time query response. The
extensive experimental evaluation based on real datasets has shown
the superiority of our proposed techniques to index real-time data
and provide low-latency queries compared to existing competitors.

CCS CONCEPTS
• Information systems → Multidimensional range search;
Stream management; Data streaming; Query operators.

KEYWORDS
Spatial, Temporal, Geo-social, Real-time, Indexing, Query Process-
ing

ACM Reference Format:
Abdulaziz Almaslukha,b Amr Magdya,b . 2019. Temporal Geo-
Social Personalized Search Over Streaming Data. In 27th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems
(SIGSPATIAL ’19), November 5–8, 2019, Chicago, IL, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3347146.3359073

∗This work is partially supported by the National Science Foundation, USA, under
grants IIS-1849971, SES-1831615, and CNS-1837577.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6909-1/19/11. . . $15.00
https://doi.org/10.1145/3347146.3359073

1 INTRODUCTION
The unprecedented popularity of online social media platforms
over the past decade combined with the availability of location
information through GPS-equipped devices has led to significant
attention for supporting geo-social queries at scale [5, 6, 13] in or-
der to serve applications efficiently on such big data. These queries
are used in various applications and services such as social recom-
mendations [8, 35, 44], community and event detection [10, 21, 41],
and urban planning [17]. A major category of these queries is per-
sonalized search queries that use the social information to tailor
the query answer per the issuing user. For example, a user who
is visiting Paris wants to find recent posts from her friends in the
city. To allow finding recent posts at a fine temporal granularity,
it is required to manage geo-social data as a data stream. In fact,
the modern geo-social data has a streaming nature due to the large
number of its data items that arrive every second around the clock.
Latest assessments estimate Twitter to receive approximately 8,500
tweets/second [19] while Facebook posts are even an order of mag-
nitude larger in size [14, 19]. This streaming nature has already
motivated several streaming queries on this data, such as keyword
queries [3, 26, 37], spatial queries [25, 28], and social queries [23, 30],
with plenty of applications. Although several geo-social queries
have been addressed in the literature [5, 6, 13, 20, 22, 39, 45], query-
ing streaming data combining both social and geographic location
information is still an unaddressed challenge.

Geo-social queries have got a little attention in the streaming
environments although several applications that are powered by
these queries will significantly benefit from the real-time nature of
geo-social data, e.g., providing real-time search on friends’ posts
during emergency situations and detecting real-time events based
on friends’ updates. In such streaming environments, hundreds of
millions of items arrive at high pace every day, which puts major
challenges on real-time indexing and query processing based on
both social and geographic information. These challenges include
sustainable digestion of new data in real-time index structures and
exploiting the social information, which is usually complex in struc-
ture and huge in size, to serve incoming queries that have certain
locations of interest. State-of-the-art techniques [7, 22, 33, 34] are
still limited to address these challenges, either for inefficient index-
ing for real-time data or inefficient query processing navigating
highly-complex graph structures, which limits using streaming
geo-social information in scalable applications.

This paper introduces scalable real-time indexing and query pro-
cessing for two geo-social personalized search queries over stream-
ing data. The two queries combine three aspects: spatial, temporal,
and the social connectivity between users. They are socio-temporal
extensions of the two fundamental spatial queries, range query and
k-nearest-neighbor query, to effectively serve the streaming data

https://doi.org/10.1145/3347146.3359073
https://doi.org/10.1145/3347146.3359073

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Abdulaziz Almaslukha,b Amr Magdya,b

applications that are timely by nature. Example of such queries is to
“find what my friends/friends-of-friends have recently posted in Paris”,
where a spatial range encapsulates Paris city boundaries, or “find
what my friends/friends-of-friends post now nearby Tampa, Florida”
in case of hurricane emergency. Such queries are obviously useful
for various applications that make use of personalized real-time
content, such as improving emergency response by involving the
close social circle of individuals or getting personalized recommen-
dations from friends. To limit query answer to top relevant items,
the queries use ranking functions based on timestamp and discrete
social distance, similar in spirit to hop count, to retrieve only top-k
items that satisfy the query predicates.

In support of these two queries in real time, we propose a geo-
social indexing framework that distinguishes highly-streaming data
from relatively-stable data. Then, it employs memory-based light
indexing for incoming streams and disk-based indexing for stable
data. Based on this framework, we propose a novel geo-social index
that effectively organizes real-time data for efficient querying. The
index consists of three components: an in-memory spatio-temporal
index, an in-disk social index, and an in-memory buffer. During
query processing, both in-memory and in-disk data are combined
to retrieve relevant data from direct friends in the social graph.
If the retrieved data items are less than k , then the query search
expands to search indirect friends at one or more levels of social
expansions to retrieve the final top-k answer. Due to the awareness
of social aspect, the query processor smartly prunes the search space
based on social connectivity in addition to spatial and temporal
information. Such three-dimensional pruning significantly reduces
the query response time and reduces contention on the real-time
index structure to maintain high real-time data digestion rates.

The extensive experimental evaluation of our proposed tech-
niques on real datasets has shown superiority over competitor
techniques that are incorporated from the literature. Using a single
machine setting, our index can digest up to 220K object/second of
streaming data while providing an order of milli-seconds query
latency for both average and 99% of the queries. In addition, the
in-memory component of our proposed index consistently main-
tains low memory usage compared to competitor techniques. Our
contributions in this paper can be summarized as follows:

• We define two temporal geo-social personalized search
queries that retrieve data objects based on spatial, temporal,
and social predicates on streaming data.

• We propose a novel real-time indexing framework that effi-
ciently digests geo-social streaming data in real time.

• We develop query processing techniques that exploit the
index content and further prune the search space to provide
low query latency.

• We extensively evaluate the proposed techniques compared
to existing competitors on real Twitter datasets showing their
superiority and effectiveness for streaming environments.

The rest of this paper is organized as follows. Section 2 presents
the related work. Section 3 presents the problem definition. Sec-
tions 4 and 5 detail the proposed geo-social indexing and query
processing techniques. Section 6 provides an extensive experimen-
tal evaluation. Finally, Section 7 concludes the paper.

2 RELATEDWORK
There is no current research work that addresses geo-social queries
on user-generated streaming data in real time to the best of our
knowledge. However, social-aware queries are supported indepen-
dently on both spatial user-generated data and streaming user-
generated data in the literature. This section covers this literature
and distinguishes it from our proposed work.

Queries on user-generated streaming data. User-generated
streaming data has got significant attention over the past few years
due to the popularity of online social media platforms and sim-
ilar online services. In addition to continuous queries [29, 37]
that was the only focus of traditional machine-generated stream-
ing data, user-generated streaming data has been exploited for
various applications and snapshot queries, such as geo-textual
queries [3, 11, 26], location-based search [7, 9, 28], trend detec-
tion [1, 15, 31], time-sensitive recommendations [42], and news and
topic extraction [16, 32, 38]. In this literature, the spatial and social
aspects of the queries are addressed independently. So, location-
based search queries, e.g., [7, 9, 28], do not support any social or
personalized aspect, and personalized queries, e.g., [22], do not
consider the spatial dimension. A recent attempt to combine both
spatial and social dimension is proposed in [33]. However, their
solution creates a complete disk-based spatial index for each user,
which is extremely expensive for streaming data and cannot even
scale to be a baseline approach to compare with. Our work distin-
guishes itself from existing techniques to be the first to combine
both spatial and social aspects in one query while considering
streaming environments for both lightweight real-time indexing
and efficient query processing.

Social queries on spatial data. Due to the importance and
various applications that benefit from combining social and spa-
tial aspects, several researchers have recently developed index-
ing and query processing techniques for different geo-social
queries, e.g., [2, 5, 6, 13, 30, 45]. This includes recommending
POIs [34, 35, 43, 44], finding cliques [18, 24, 40], finding top-k spatial-
keyword objects [39], and finding top-k influential users [20]. How-
ever, none of these techniques address geo-social personalized
search queries on streaming data. Thus, our work is distinguished
from all existing techniques in multiple ways. First, we are the
first to extend geo-social queries with the temporal aspect due to
the nature of streaming data that is the main focus of this paper.
Second, we are the first to consider lightweight real-time indexing
and query processing for geo-social data. This real-time aspect of
the streaming environment puts significant overhead on both in-
dexing and query processing, which cannot be handled by any of
the existing techniques.

3 PROBLEM DEFINITION

We evaluate the geo-social queries on a streaming dataset D
that consists of geo-social objects. Each object o ∈ D is represented
with the three main attributes (uid , loc , timestamp), where uid is
the identifier of user who posted this object, loc is the location
of the object in the two-dimensional space represented with lati-
tude/longitude coordinates, and timestamp is the time when the
object is posted. DT is a snapshot of the dataset D at time T , so
every object o ∈ DT has o.timestamp ≤ T . Table 1 shows a sample

Temporal Geo-Social Personalized Search Over Streaming Data SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

UID OID Keywords Timestamp
u1 o1 Fantastic, Comeback, Play 06-10-2019 20:18:30
u2 o2 Love, Pineapple, Pizza 06-10-2019 20:18:27
u3 o3 Sunny, Day, Good, Running 06-10-2019 20:18:23
u1 o4 Freeway, Traffic, Bad 06-10-2019 20:18:19
u4 o5 University, Graduation 06-10-2019 20:18:17
u2 o6 USA, Japan, Summit 06-10-2019 20:18:14
u5 o7 Airport, Flight, Time, Ready 06-10-2019 20:18:09
u6 o8 NBA, Lakers, LeBron 06-10-2019 20:18:06

Table 1: Content of Objects in Figure 1

of the dataset that consists of eight objects. Each object, identified
by oid , is composed of a user id who posted the object, a set of key-
words that represent the textual content, a timestamp, and located
in the space as shown in Figure 1. In addition, the social connec-
tivity between the users is represented as a hashtable where the
<key,value> pair is <user id, list of friend ids>. Each entry consists
of the given user id as the key, and the list of user’s friends ids as
the value. We can easily navigate from user’s friend to the friends
of friends by expanding the immediate friends and retrieving their
friends. This process can be repeated to navigate to higher levels of
the social graph. The simplicity of representation and navigation of
the social graph helps the query processors to achieve high query
throughput, especially in a tight streaming environment.

The two fundamental spatial queries, in particular range query
and k-nearest neighbor, that are common in the literature have
been extended to support temporal geo-social aspects in this work.
The query definitions of the two extended queries as following:

Spatial-social Temporal Range Query (SSTRQ): given q =
<user u, spatial range R, integer k , and timestamp T>, and DT that
is a snapshot of the dataset D at time T , SSTRQ retrieves the most
recent k objects oi ∈ DT , 1 ≤ i ≤ k , that are posted within R and
are posted by u’s friends or friends of friends based on a discrete
social distance.

Thek objects are ranked based on time to retrieve themost recent
objects inDT fromu’s direct friends. Ifq fails to retrieve allk objects
from u’s friends, the search is expanded to u’s friends of friends
recursively to retrieve the rest of objects. So, the social relevance of
objects in q answer are assessed based on a discrete social distance
that takes only integer values (1,2,3, etc) and no fractional values
in between. This enables scalable query processing on streaming
data in real time as detailed in the following sections.

Spatial-social Temporal kNNQuery (SSTkQ): given q = <user
u, spatial point location L, integer k , and timestamp T>, and DT
that is a snapshot of the dataset D at time T , SSTkQ retrieves top-k
objects oi ∈ DT , 1 ≤ i ≤ k , that are posted by u’s friends or friends
of friends, and ranked based on a spatio-temporal distance Fα from
L and T as follows:

Fα (o,q) = α × SpatialScore(o,q) + (1 − α) ×TemporalScore(o,q)

Where α is a weighting parameter, 0 ≤ α ≤ 1, that weights the
relative importance of spatial and temporal scores in the object
proximity. SpatialScore and TemporalScore are defined as follows:

SpatialScore(o,q) =
distance(o.loc,q.L)

RMax

Figure 1: Spatial Quadtree (SQ)

TemporalScore(o,q) =
q.T − o.timestamp

TMax

Where RMax and TMax are the maximum allowed spatial and tem-
poral ranges for any object, and distance is the spatial distance
between object and query locations in the Euclidean space. The
social relevance is assessed using the same discrete social distance
that is used in SSTRQ for scalability on streaming data in real time.

4 GEO-SOCIAL REAL-TIME INDEXING
This section presents geo-social data indexing in real time. This data
is rich with spatial, temporal, and social information. The two main
challenges in indexing such rich data in real time are: (1) encoding
the incoming information in highly-scalable data structures that
are efficient for insertions with tens of thousands of data objects
each second, and (2) removing old data from the main memory to
sustain digesting new incoming data objects at all times. Traditional
insertion procedures in spatial and social index structures incur
significant overhead that limits scalable data digestion. In addition,
straight forward deletion procedure that scan every index cell in
different spatial regions or different parts of the social graph to
expel old data incur significant overhead that will also affect the
indexing scalability in real time.

To address these challenges, we introduce a generic indexing
framework (Section 4.1) that separates highly-dynamic data from
relatively-stable data, so real-time data structures are tailored to
digest only the needed information in real time to reduce both
insertion and deletion overheads. Based on this framework, we pro-
pose a scalable index (Section 4.2) that enables efficient handling
for geo-social data in real time, and adapt two baseline index struc-
tures (Section 4.3) from the literature of spatial and spatial-social
indexing. The rest of this section details the indexing framework
as well as the three indexes.

4.1 Indexing Framework
The proposed indexing framework depends on the observation
that incoming geo-social data objects are highly dynamic while the
social graph information is relatively static. Each second, tens of
thousands of geo-social objects are flowing, which requires real-
time digestion. These objects are posted by hundreds of millions
of users that are connected to each other with social bonds, repre-
sented as a social graph. This social graph is not updated frequently
compared to the geo-social objects. In real Twitter dataset, an active
user posts on average seven tweets per day [36], which leads to
hundreds of millions of tweets every day. However, the number of

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Abdulaziz Almaslukha,b Amr Magdya,b

(a) Spatial-social Quadtree (SSQ) (b) Tightly-coupled Spatial-social Quadtree (TCSSQ)

Figure 2: Structure of geo-social real-time indexes

new friends or unfollowed friends are not even close to this daily
number. It is usual not to accept new friends or follow new people
for several days, weeks, or even months. Consequently, the fre-
quency of updates in social graph information is way less than the
incoming geo-social objects in real time. Our indexing framework
exploits this observation to dedicate the necessary resources to
index each type of data.

The proposed indexing framework consists of three components:
(1) in-memory index that digests streaming geo-social objects in
real time, (2) in-disk index that organizes relatively stable social
graph information, and (3) in-memory buffer that swaps social
graph information from and to the disk index. The in-memory in-
dex is equipped with optimized insertion and deletion techniques
that minimize the real-time overhead and enable to scale for han-
dling streaming data. As main-memory is a scarce resource, data
cannot be digested infinitely with excessive amounts and have
to be expelled to a secondary storage on a regular basis. For that
reason, the in-memory index employs a temporal duration TMax
that indicates the maximum allowed past data to store. TMax is a
system parameter and can be adjusted by the administrators based
on the available main-memory resources and the streaming rates
of incoming data.

The second component is an in-disk index that stores the social
graph information. Two reasons are behind storing this informa-
tion on disk. First, the excessive size of this information consumes
significant memory storage that is not frequently utilized, due to
the long-tail distribution where the majority of users are inactive
in queries [27]. For example, a subset of our experimental Twitter
social graph with 3.3 million users consumes approximately 62.5 GB
of main-memory as each user has an average of 500 friends. Second,
the relative stability of social graph information as discussed earlier
in this section. This makes the social graph index structure needs
infrequent updates, which is not challenging to be handled on the
disk storage. However, for query processing, it is inefficient to visit
the disk for every retrieval of a user friend list, especially for ac-
tive users who post frequent queries. This has motivated the third
component of our indexing framework, which is the in-memory
buffer for social graph information. This component acts similar
to the database buffer, where certain disk pages are swapped in
the main-memory buffer from the disk index only when needed.
As disk pages keep accumulating in the buffer, it becomes full and
needs to evict some of its content to swap in new pages. Eviction
policies that are used for the buffer are the same ones studies in
the literature of database buffer management and operating system
virtual memory. We choose to use the famous least recently used

(LRU) policy in our realization. However, other policies could be
used based on the underlying application requirements.

4.2 SSQ Index
Based on the described framework in Section 4.1, we propose
Spatial-Social Quadtree (SSQ) index for scalable real-time index-
ing of geo-social objects. Conformed to the framework, the index
has three components, an in-memory component for digesting ob-
jects in real-time, a disk-resident component for the social graph
indexing, and an in-memory buffer, as described in Section 4.1.
This section describes the details of index structures and update
operations for different index components.

Index structure. The in-memory component adopts a spatial
quadtree [4] as a highly-scalable space-partitioning index for real-
time data digestion. An example of spatial quadtree is depicted in
Figure 1 for eight geo-social objects that are presented in Table 1.
The tree divides the space into multi-level disjoint cells that either
have four or zero children cells. An incoming object is located in the
cell that contains its location. A cell is divided into four quadrants
only if the number of objects exceeds a specific cell capacity, which
is a system parameter that determines the tree height, so a small cell
capacity leads to a deeper tree while a large cell capacity generates
a shallow tree. Only leaf nodes hold data objects, while intermediate
nodes provide routing information. SSQ index extends the quadtree
to be aware of the user aspect of the spatial objects. In specific, each
leaf cell is equipped with a hash index structure that organizes the
cell’s objects based on the issuing users. This hash structure is light
for real-time digestion, and still provides effective pruning for the
search space based on the social information. The hash structure
uses the user id as a key and the value is a list of objects that are
posted by this user ordered based on their timestamps. Including
the social information within the spatial cell significantly helps the
query processor to retrieve candidate objects that could potentially
make it to the final answer.

Figure 2a depicts an example of the SSQ in-memory index. The
depicted index represents the same set of objects that are depicted
in Figure 1, and the same quadtree organization, with adding the
light hash structure to each leaf node that enables effective social-
based pruning while sustains high digestion rates in real time as
verified in our experimental evaluation.

The in-disk component of SSQ index stores the social graph
represented by a set of adjacency lists. Our social graph represen-
tation adopts the famous form that represents users as nodes and
friendship relations as directed edges. The adjacency list represen-
tation stores this information as a hash structure that uses user id
as a key and list of friends as a value for each hash entry. Figure 3

Temporal Geo-Social Personalized Search Over Streaming Data SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

(a) Example Social Network (b) Social Structure on Disk

Figure 3: Example of In-disk Social Structure

demonstrates an example for a social graph with six users, u1 to u6.
Figure 3a shows the high-level graph model for the social relations
among the six users while Figure 3b shows the adjacency list repre-
sentation that is stored on the disk-resident index structure. The
disk structure consists of two parts, the data part and the index part.
The data part stores consecutive blocks of long integer lists that
contain the user ids as depicted in Figure 3b. The index part stores
all the distinct user ids, each user id is associated with a disk pointer
to the block in which the user friend list is stored. Compared to the
data part, the index part is small in size and can be easily loaded
during the query processing for efficient access of user information
as described in Section 5.

To reduce the overhead of reading back and forth from the disk,
the third component of SSQ index is a dedicated in-memory buffer
that is utilized to store the retrieved user friend lists from the disk for
further recycling during future queries. The in-memory buffer is a
hash structure that stores key-value pairs of user ids and friend lists,
similar in format to the disk index from which data is retrieved.
When the in-memory buffer is full, it adopts the least recently
used (LRU) policy to free up content to continue serving incoming
queries.

Index insertion. Insertion in both the in-disk component of SSQ
index and its corresponding buffer adopts traditional one-by-one
insertion due to the low insertion rates in the stable social structure.
On the contrary, the in-memory index component, that adopts a
social-aware quadtree, incurs an excessive insertion rate as tens
of thousands of objects arrive every second. Traditional insertion
procedure that navigates the tree hierarchy for each incoming
object and inserts it in the corresponding cell does not scale to cope
up with such high insertion rate. To overcome this problem, we
employ a batch insertion process that collects a few seconds worth
of data in a temporary buffer and inserts them as one batch in the
quadtree structure. During the buffering, a minimum bounding
rectangle (MBR) is maintained around the location of incoming
objects. Then, the MBR boundaries are compared to the index cell
boundaries, instead of comparing location of each object, and the
tree navigation is performed based on this cheap comparison. With
thousands of objects buffered, thousands of comparison operations
are saved, which significantly boost the digestion performance and
allows to ingest streaming data with high arrival rates.

Index deletion. To sustain digesting incoming data in the scarce
memory resources, the in-memory index expels objects that are

older thanTMax time units ago to the disk, whereTMax is a system
parameter that is based on the availability of memory resources
and arrival rates of the underlying streaming data. To expel this
data, a straight forward way is to exhaustively iterate over all index
cells, either every few time units or when a certain memory budget
fills up, and clean up all expired data objects that are older than
TMax . However, such exhaustive and frequent cleaning process
puts an overhead on real-time operations of the index. To avoid
such overhead, we employ a combination of regular and periodic
cleaning processes that are lighter than the exhaustive cleaning
and still sustain memory consumption. The regular cleaning is
piggybacked on the real-time insertion and querying, so whenever
an index cell is accessed for either insertion or query processing,
the accessed entries are checked for expired content to be expelled
from main-memory. This reduces the cleaning overhead as it shares
the index traversal overhead with the other operations.

This regular cleaning process does not guarantee to expel all the
expired data proactively as it depends on the spatial distributions
of both data and queries, so some index cells might be left without
cleaning due to infrequent access to those cells. To address this,
we employ a light periodic cleaning that goes over all index cells
every TMax time units. For each cell, if it is not cleaned during the
past TMax time units, which means no insertions happened during
this period, all the cell content is wiped as all objects are expired.
Otherwise, the cell is skipped. This process is very light and mainly
addresses cells that are infrequently accessed. In addition, it can be
easily invoked in a separate thread to reduce the contention over
index cells in real time.

4.3 Baseline Indexes
In addition to our proposed SSQ index (Section 4.2), we adopt two
baseline indexes based on the proposed indexing framework that is
described in Section 4.1. The two baseline indexes are alternatives
to address the supported queries based on existing techniques in the
literature. The two baseline indexes are Spatial Quadtree (SQ) and
Tightly-Coupled Spatial-Social Quadtree (TCSSQ). The rest of this
section describes each index and highlight its differences compared
to the proposed SSQ index.

(1) Spatial Quadtree (SQ). This index has a similar structure
to the SSQ index with the exception of the in-memory index com-
ponent that adopts a pure spatial quadtree structure without any
extended structures to organize the data based on the posting users.
Figure 1 shows an example of the spatial quadtree index. It is worth
noting that all data objects in the leaf nodes are sorted based on
their arrival timestamp at no additional cost due to the nature of
streaming data that comes ordered by time. For the index insertion
and deletion, the same procedures that are developed for SSQ index
are used in SQ index with the exception of navigation the leaf nodes
content that does not have the hash structure anymore. So, inserted
data are appended to a long list of chronologically ordered objects,
and all the cleaning processes are performed on the same list, which
reduces the real-time indexing overhead while increases the query
processing overhead as will be detailed in Sections 5 and 6.

(2) Tightly-Coupled Spatial-Social Quadtree (TCSSQ). This
index has a similar structure to the SSQ index with the exception
of the in-memory index component that includes extra user infor-
mation in all intermediate and leaf nodes of the quadtree structure

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Abdulaziz Almaslukha,b Amr Magdya,b

instead of having a hash structure in only leaf nodes. In specific,
each leaf node C has an additional list of users C .Lu who posted in
the spatial region of C . Then, the content of C .Lu is replicated to
the parent nodes up to the root node. So, the root’s Lu has all the
users who posted in any region, and each intermediate node has
a list of all users who posted in the sub-tree that is rooted in this
intermediate node. This organization is a modified version of [39]
that is suitable for real-time indexing. This is built based on the core
ideas of the IR-tree structure [12]. Figure 2b depicts an example of
TCSSQ index for the eight objects of Table 1. Each node, including
root, intermediate, and leaf nodes, has an additional list C .Lu of
users who posted in the node C spatial region.

The additional user lists Lu affect the index insertions and dele-
tions in real time. On insertion, after the insertion procedure is
performed in node C as described for SSQ index, the posting user
id uid is added to C .Lu . To this end, uid is searched in C .Lu using
binary search. If uid does not exist in C .Lu , it is inserted into the
ordered list, otherwise,C .Lu remains intact. Then, the same process
repeats for parent nodes’ Lu until it propagates to the root node.
On index deletion, object deletions are performed for certain user
entries in the node’s hash structure. For each user entry, if the list of
objects remains non-empty, i.e., there are still remaining objects for
this user in the node, C .Lu remains intact. On the contrary, if the
list of objects becomes empty, i.e., the deleted objects are the last
objects for this user in the node, then the user id is removed from
C .Lu . Then, the removal checks are propagated to parent levels
of the tree. For C’s parent Lu , the three siblings nodes of C are
checked. If uid exists in any of their Lu lists, then the parent’s Lu
remains intact. If uid does not exist in any of these lists, then uid is
removed from the parent’s Lu , and the removal check is propagated
to the higher levels up to the root node.

5 QUERY PROCESSING

This section details the query processing of SSTRQ and SSTkQ
queries that are defined in Section 3 exploiting the proposed SSQ
index, and the baseline SQ and TCSSQ indexes that are introduced in
Section 4. In Section 5.1, we introduce a high-level query processing
framework that is generic for the three indexes. Then, Sections 5.2
and 5.3 detail the query processing of SSTRQ and SSTkQ queries,
respectively, based on the three indexes.

5.1 Query Processing Framework
Our query processor consists of two generic steps:

(1) Step 1: Given the user iduid of the query issuing useru, step 1
retrieves a list of friends u .Lf that contains a set of user ids for
u’s direct friends. To this end, the in-memory buffer of the social
graph is checked with the key value uid . If it exists, u .Lf is directly
retrieved from the buffer. Otherwise, the in-disk social index is
accessed in a traditional way to retrieve u .Lf to the in-memory
buffer. If the in-memory buffer is full, the least recently used (LRU)
replacement policy is used to free up some of the buffer content.
Then, u .Lf is fed to step 2 of the query processor.

(2) Step 2: Given a list of friends Lf , that is retrieved in step 1, and
spatio-temporal predicates, in step 2, the query processor accesses
the in-memory spatial index to retrieve the top-k objects based on
the query semantic and the underlying index structure. The specifics

of this step is different for each <query,index> combination, as
detailed in the rest of this section.

If the execution of these two steps retrieves k objects, then they
are considered a final query answer and returned to the user. If the
computed answer has less thank , the search is expanded recursively
beyond u’s social level 1 (direct friends) to social level 2 (friends of
friends) or higher social levels until k objects are retrieved. To this
end, the two steps are repeated for each user id in Lf for expansion
to social level 2, and the same repeats for higher social levels.

5.2 SSTRQ Query Processing
This section details the specifics of step 2 of Section 5.1 for SSTRQ
query. In this step, the query processor retrieves the most recent
k objects within a spatial region R, per the query definition, that
are posted by users in the friend list Lf that is computed in step 1.
The rest of this section details this procedure using SSQ, SQ, and
TCSSQ indexes.

SSTRQ in SSQ index. SSTRQ query is processed on three
phases in SSQ index: (a) spatial retrieval, (b) social filtering, and
(c) temporal pruning. First, the spatial retrieval phase navigates the
quadtree to retrieve the tree nodes that intersect with the query
region R. Second, for each node, the social filtering phase accesses
the hash index and retrieve lists of objects that are associated with
user ids in the friend list Lf . Each of these lists is ordered based on
timestamp due to the streaming nature of incoming objects. Third,
the retrieved lists are enqueued in a priority queue Q that orders
lists based on their most recent object. Then, the lists are traversed
in Q order to compute an initial answers Ans of k objects. Based
on Ans , a temporal boundary Tk is computed as the timestamp of
the kth object in Ans . Any object older than Tk cannot be part of
the final answer. So, Tk is used as a temporal pruning boundary
to process the rest of the objects in Q . In specific, each list in Q
is retrieved in order. Then, the list’s objects are traversed in time
order. If the current object o.timestamp < Tk , then o is added to
Ans replacing the kth object, and Tk is updated. Otherwise, o is
skipped. Once we reach an object o.timestamp ≥ Tk , the rest of the
list is pruned as no more objects can make it to the final answer.
This repeats for all lists in Q before Ans is returned as a final query
answer.

SSTRQ in SQ index. In SQ index, SSTRQ is processed using
the first and third phases, spatial retrieval and temporal pruning,
that are used in SSQ index. As SQ index does not include any
user information, the social filtering phase cannot be employed.
So, the list of objects in each quadtree node is fed directly to the
temporal pruning phase that produces the final answer using the
same procedure that is described above.

SSTRQ in TCSSQ index. In TCSSQ index, SSTRQ is processed
using the same three phases that are used in SSQ index, with an
extended social filtering phase. In particular, TCSSQ index main-
tains extra user list information C .Lu in each quadtree node C . So,
the social filtering phase goes through two stages. The first stage is
intersecting the user friend list u .Lf with the node user list C .Lu .
If the intersection is empty, then C and all its descendants are im-
mediately pruned. Otherwise, C is considered for the second stage
that is exactly similar to the social filtering phase in SSQ index. The

Temporal Geo-Social Personalized Search Over Streaming Data SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

other two phases, spatial retrieval, and temporal pruning, remains
identical to the ones in SSQ index.

5.3 SSTkQ Query Processing
This section details step 2 of the query processing framework that
is presented in Section 5.1 for SSTkQ query. This query retrieves
the closest k objects, based on a spatio-temporal distance function
Fα , nearby a point location L and relative to a query timestamp T
that are posted by users in the friend list Lf that is computed in
step 1, per the query definition in Section 3. The rest of this section
details the query processing using SSQ, SQ, and TCSSQ indexes.

SSTkQ in SSQ index. SSTkQ query is processed on two phases
in SSQ index: (a) computing initial answer, and (b) answer refine-
ment. The first phase navigates the quadtree structure to the tree
node C that contains the query location L. Then, initial k objects
that are associated with users in the friend list Lf are retrieved
as an initial answer Ans . If C has less than k objects posted by Lf
users, then neighbor nodes are checked until Ans has k objects.

The second phase uses the kth Fα score of the initial answer
(namely Fα,k) as a refinement boundary to compute the final an-
swer Ans so any object with Fα ≥ Fα,k cannot make it to the final
answer. This could be done in a traditional way by visiting all nodes
within the maximum spatial range RMax and check objects that are
associated with Lf . However, with excessive amounts of data, this
could be very expensive and has high query latency. To compute the
final answer efficiently, a spatio-temporal pruning procedure is em-
ployed to significantly reduce the number of checked objects. To this
end, two pruning boundaries are calculated and updated throughout
the second phase based on the equation of Fα : a spatial boundary
Ru and a temporal boundary Tu . The spatial upper bound Ru is
calculated by assuming zero temporal score in the spatio-temporal
ranking function, so Ru =

Fα ,k
α × Rmax . Similarly, the temporal

upper bound Tu is calculated by assuming zero spatial score in
spatio-temporal ranking function, so Tu = q.time −

Fα ,k
1−α ×Tmax .

Any object or cell that are outside Ru and Tu can be safely pruned.
So, neighbor quadtree nodes to location L are visited in spatial order
with Ru , and objects of each node are checked as long as within
Tu . With each new object added to Ans , Fα,k is updated and then
Ru and Tu are updated accordingly. So, the pruning boundaries are
continuously tightened, which reduces the total number of checked
objects and significantly reduces the query latency. When all nodes
and objects within Ru and Tu are exhausted, Ans is returned as a
final answer.

SSTkQ in SQ index. In SQ index, SSTkQ is processed using the
same two phases as in SSQ index with exception to user filtering in
quadtree nodes. As SQ index does not include any user information,
the list of objects in each quadtree node is used as a whole and fully
scanned for filtering objects that are posted by Lf users.

SSTkQ in TCSSQ index. In TCSSQ index, SSTkQ is processed
using the same two phases that are used in SSQ index, with an
extended user filtering step. As TCSSQ index maintains extra user
list information C .Lu in each quadtree node C , when a quadtree
node is accessed, the user friend list u .Lf is intersected with the
node user list C .Lu . If the intersection is empty, then C and all its
descendants are immediately pruned. Otherwise, C is considered
for further processing as described in the two phases of SSQ index.

6 EXPERIMENTAL EVALUATION
This section presents the experimental evaluation of geo-social
real-time indexing and query processing of SSTRQ and SSTkQ
queries as discussed in previous sections. Section 6.1 explains the
experimental settings. Sections 6.2-6.4 evaluate indexing scalability,
memory consumption, and query evaluation, respectively.

6.1 Experimental Setup
We evaluate the three indexes that are discussed in Section 4 for in-
dexing scalability, storage overhead, and query processing. The pro-
posed Spatial-Social Quadtree index is denoted as SSQ, the baseline
Spatial Quadtree index is denoted as SQ, and the Tightly-Coupled
Spatial-Social Quadtree index is denoted as TCSSQ, a modified
version of [39] for real-time operations. Our parameters include
quadtree node size, dataset size, query answer size k , query range,
and the space-time weighting parameter α . Unless mentioned other-
wise, the default node size is 2000, dataset size is 80 million objects,
k is 100, query range is 50 km, α is 0.2, RMax is 500 km, TMax is
one day, and buffer size is 500K entries. Our performance measures
include index digestion rate (the average number of indexed ob-
jects per second), index memory footprint, and query latency. All
experiments are based on Java 8 implementation and using an Intel
Xeon(R) server with CPU E5-2637 v4 (3.50 GHz) and 128GB RAM
running Ubuntu 16.04.

Evaluation datasets and query workloads. We have col-
lected 6+ billion geotagged tweets from public Twitter Streaming
APIs over the course of five years. Then, five datasets, of sizes 20,
40, 60, 80, and 100 million tweets, are composed for our evaluation.
Each Tweet is represented with a latitude/longitude coordinates
that represent either an exact location or a centroid of a place, e.g.,
a city or a landmark. Users of all tweets have been extracted from
each of the five datasets. The data includes only the number of
friends of each user and not the actual friend list. Thus, we ran-
domly generate a list of friends for each user, where the majority
are close to her location while the rest are scattered around the
world. Table 2 summarizes the number of users and the average
number of friends in each dataset. In order to generate the query
workload, we randomly select a thousand users, and their home
locations are the query points.

Dataset 20M 40M 60M 80M 100M
Users 3379403 4589750 5323808 5862339 6319263
Avg. Friends 531 513 504 497 492

Table 2: Evaluation Dataset Statistics

6.2 Indexing Scalability
This section evaluates the scalability of the real-time indexing mea-
sured as the number of objects being digested in a second. Figure 4a
shows the indexing scalability with different quadtree node size.
SQ can digest on average 250K objects/sec which is the highest
among the three indexes. SSQ digestion rate is reduced to 210K
objects/sec, due to incorporating social information in the index
structure, which still maintains 84% of SQ digestion rate and digests
an order of magnitude higher than Twitter rate. On the other hand,
TCSSQ has the lowest digestion rate of 100K objects/sec due to

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Abdulaziz Almaslukha,b Amr Magdya,b

80
100
120
140
160
180
200
220
240
260

10
0

20
0

40
0

80
0

10
00

20
00D

ig
e

s
ti
o

n
 R

a
te

 (
K

 o
b

j/
s
e

c
)

Node Size

SSQ

SQ

TCSSQ

(a) Varying Node Sizes

80
100
120
140
160
180
200
220
240
260

20 40 60 80 100

D
ig

e
s
ti
o

n
 R

a
te

 (
K

 o
b

j/
s
e

c
)

Dataset Size (millions)

SSQ

SQ

TCSSQ

(b) Varying Dataset Sizes

Figure 4: Indexing Scalability

 0
 5

 10
 15
 20
 25
 30
 35
 40

100 200 400 800 1000 2000

M
e

m
o

ry
 F

o
o

tp
ri
n

t
(G

B
)

Node Size

SSQ

SQ

TCSSQ

(a) Varying Node Sizes

 5

 10

 15

 20

 25

 30

 35

 40

20 40 60 80 100

M
e

m
o

ry
 F

o
o

tp
ri
n

t
(G

B
)

Dataset Size (millions)

SSQ

SQ

TCSSQ

(b) Varying Dataset Sizes

Figure 5: Memory Footprint

the overhead of summarizing all sub-tree social information. It is
though noticeable that different node sizes have no real impact on
the digestion rate.

Figure 4b shows the impact of different dataset sizes on the
digestion rate. The digestion rate is slightly decreasing when the
number of objects increases for all indexes due to the larger index
contents, which makes it heavier to digest new data. However, the
overall reduction is still acceptable. For example, SSQ digests 220K
objects/sec with 20 millions objects and 190K objects/sec with 100
millions objects, which represents 14% reduction of digestion rate
and both are still an order of magnitude higher than Twitter rate.

6.3 Memory Consumption
Figure 5 shows the memory consumption for the three indexes with
varying the quadtree node size (Figure 5a) and varying dataset size
(Figure 5b). Varying node size in Figure 5a does not significantly
affect the memory consumption for all the three indexes despite
an order of magnitude higher node capacity, which leads to signifi-
cantly less number of index nodes. This shows the minor effect of
the index nodes’ memory on storage overhead as the majority of
memory consumed for data that is being stored inside the nodes.
SQ consumes the lowest memory, 22 GB, while SSQ consumes a
slightly higher memory resource, 24 GB, since the index structure
keeps more information about the social aspect. TCSSQ consumes
the highest memory resource, 33 GB, with different index node
sizes. The additional social information of TCSSQ index structure
increases the memory overhead by ∼50% of the baseline SQ index.

Varying the dataset size in Figure 5b affects the memory re-
sources to be increased linearly for all alternatives. For example,
SSQ consumes 7 GB when the dataset size is 20 million objects, and
when the dataset size triple, SSQ consumes 19 GB. The same pattern
repeats for SQ and TCSSQ , where always TCSSQ still consumes
the largest memory. This also confirms that the majority of the

 0

 50

 100

 150

 200

 250

 300

 350

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(a) Average Query Latency

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(b) 99th Percentile

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(c) 95th Percentile

 0

 100

 200

 300

 400

 500

 600

 700

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(d) 90th Percentile

 0

 100

 200

 300

 400

 500

 600

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(e) Disk Overhead

 0

 20

 40

 60

 80

 100

10 30 100 500 1000

P
e

rc
e

n
ta

g
e

 (
%

)

k

Query Workload

(f) Social Expansion

Figure 6: Range query latency with varying k

memory resources are being consumed by the data that resides in
the main-memory.

6.4 Query Evaluation
This section evaluates the query processing of the Spatial-Social
Temporal Range Query (SSTRQ) and the Spatial-Social Temporal
kNN Query (SSTkQ), called for short range query and kNN query,
respectively. The query latency is presented as an average and
percentiles, e.g., the 99% percentile latency that shows themaximum
query latency for 99% of the queries.

(a) SSTRQ Query Evaluation:
Effect of varying k . Figure 6 shows the effect of varying k on

range query latency, both in-memory and disk processing. Fig-
ure 6a shows in-memory range query latency measured in milli-
seconds (msec) for all alternatives. Generally, query latency is in-
creasing with increasing k due to the more processing needed for
getting larger answer. However, the latency of TCSSQ is signif-
icantly higher than the other two alternatives. This overhead is
caused by checking the internal nodes to prune some tree branches
that are not promising to find the k objects. Although this process is
effective in disk-based processing of traditional queries, in stream-
ing environments, this process increases the real-time overhead
tremendously. As shown in the figure, our proposed SSQ index
performs the best with 2 msec latency at k=10, and it is increas-
ing to 25 msec at k=1000. SSQ index combines both social-aware
pruning and lightweight structure that is suitable for real-time en-
vironments. SQ index has no social awareness, so it is three times

Temporal Geo-Social Personalized Search Over Streaming Data SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

10 30 50 100 300

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

Range (km)

SSQ

SQ

TCSSQ

(a) Average Query Latency

 0

 500

 1000

 1500

 2000

 2500

 3000

10 30 50 100 300

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

Range (km)

SSQ

SQ

TCSSQ

(b) 99th Percentile

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

10 30 50 100 300

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

Range (km)

SSQ

SQ

TCSSQ

(c) Disk Overhead

 0

 20

 40

 60

 80

 100

10 30 50 100 300

P
e

rc
e

n
ta

g
e

 (
%

)

Range (km)

Query Workload

(d) Social Expansion

Figure 7: Range query latency with varying range query

slower than SSQ index on average. It starts with 10 msec latency
at k=10, and it is increasing steadily to reach 65 msec at k=1000.
The superiority of SSQ index is further confirmed by measuring
the 99th, 95th, 90th percentile latency as depicted in Figures 6b,
6c, and 6d, respectively. SSQ constantly performs the best in terms
of query latency, and the advantage is even obvious in Figures 6c
and 6d.

Figure 6e shows the disk overhead to retrieve the users’ friends
or friends of friends in order to retrieve the k objects for the given
user. All indexes need to access the disk to fetch the social data.
Therefore, all alternatives perform similarly, with increasing latency
with larger k value, as all indexes use the same disk-based social
structure. The increase with k value is explained by the percentage
of the query being expanded beyond the first social level (direct
friends) as shown in Figure 6f. The larger k , the less probability that
direct friends can satisfy the query answer, and hence expansion to
higher social levels is necessary.

Effect of varying query range. Figure 7a shows the average
query latency with varying query range from 10 km to 300 km. SSQ
index still performs the best among the other alternatives. Both SQ
and TCSSQ indexes have an increasing latency with the increasing
range due to the larger search space. On the contrary, the query
latency of SSQ drops with increasing range. As SSQ employs both
temporal and social pruning; the more cells the more recent initial
answer, which in turn produces a tight temporal upper bound. The
temporal pruning uses this tight bound to terminate processing
very early in many cells. In addition, the social pruning enables
to process only the posting lists that are socially connected to the
query issuer, which prunes a significant number of objects that
do not contribute to the answer. At 10 km range, SSQ processes
queries with an average of 27 msec latency, while at the range of
300 km, this latency drops four times to 7 msec. On another hand,
SQ has almost a stable performance with varying ranges as it only
employs the temporal pruning, while TCSSQ performs the worst
despite it employs both the temporal and social pruning for the
same reasons that are discussed before. Figure 7b shows the 99th

 0

 200

 400

 600

 800

 1000

 1200

 1400

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(a) Average Query Latency

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(b) 99th Percentile

 75
 80
 85
 90
 95

 100
 105
 110
 115
 120
 125

10 30 100 500 1000

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

k

SSQ

SQ

TCSSQ

(c) Disk Overhead

 0

 20

 40

 60

 80

 100

10 30 100 500 1000

P
e

rc
e

n
ta

g
e

 (
%

)

k

Query Workload

(d) Social Expansion

Figure 8: kNN latency with varying k

percentile latency, which confirms the superiority of SSQ over all
alternatives.

Figures 7c and 7d show the correlation between disk overhead
and the percentage of queries being expanded to higher social levels.
Clearly, the disk overhead decreases when the expansion percentage
decreases. With small spatial ranges, the probability to retrieve
k objects from direct friends is small, and hence the majority of
queries expand. This significantly decreases with increasing range.

(b) SSTkQ Query Evaluation:
Effect of varying k . Figure 8a shows the in-memory query

latency with varying k . SSQ index performs consistently better
than the other alternatives due to its three-dimensional pruning
on temporal, spatial, and social dimensions. At k=10, SSQ has an
average query latency of 9 msec, which increases with larger k
to 25 msec at k=1000. This is fifty times better than TCSSQ due
to its social pruning overhead that is not suitable for real-time
processing. On the contrary, SQ is slower three times compared to
SSQ due to lack of social pruning. Such behavior remains the same
for the 99th percentile of queries, as shown in Figure 8b, which
shows the superiority of SSQ in all cases. For disk overhead, all
alternative incur almost the same latency as shown in Figure 8c due
to using the same disk structure. Also, the percentage of socially
expanded kNN queries, depicted in Figure 8d, are much less than
range queries since range queries are restricted by a spatial range,
which obligates to expand the search to higher social levels often.

Effect of varying α . Figure 9a shows the effect of varying α
that controls the relative importance of the spatial and temporal
scores in the spatio-temporal distance. As the figure shows, the
α value has a great impact on the query performance, especially
for TCSSQ index. When only the temporal score is important (at
α=0), all indexes hit their highest query latency because the query
processor has to cover a larger search region. With increasing α ,
the query latency gradually drops to the lowest point for all the
indexes when only the spatial score is important (at α=1). For all
values of α , SSQ performs the best, while TCSSQ performs the

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Abdulaziz Almaslukha,b Amr Magdya,b

 0

 50

 100

 150

 200

 250

0 .2 .4 .6 .8 1

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

α

SSQ

SQ

TCSSQ

(a) Average Query Latency

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

0 .2 .4 .6 .8 1

Q
u

e
ry

 L
a

te
c
n

y
 (

m
s
e

c
)

α

SSQ

SQ

TCSSQ

(b) 99th Percentile

Figure 9: kNN latency with varying α

worst up to α < 0.6. Then, TCSSQ performs better than SQ after
α ≥ 0.6. The key reason behind this behavior is the number of cells
that need to be processed is huge with small α , and TCSSQ is very
sensitive to the number of cells as it checks for overlap with long
user lists. This number decreases as the query region shrinks due
to the importance shifts to the spatial closeness. Figure 9b confirms
similar behavior and SSQ superiority on the 99th percentile of
queries. For different values of α , the disk overhead is almost stable
(approximately 80 msec) for all alternatives except with α=0 where
very few queries expand the search space, which makes the disk
overhead very minimal with a few milliseconds.

7 CONCLUSION
This paper defined two temporal geo-social queries on streaming
data as extensions for the fundamental spatial k-nearest neighbor
(kNN) and range queries. To address these queries, we proposed
a generic indexing framework for real-time geo-social data that
digests and indexes highly-dynamic data in main-memory and
organizes stable social information in a disk-based structure. Based
on this framework, we proposed spatial-social quadtree index that
is lightweight to handle real-time data efficiently, while providing
scalable query response for both kNN and range queries. In addition,
we adopted two baseline index structures based on the proposed
indexing framework. The experimental evaluation on real datasets
has clearly shown the superiority of our proposed index for both
real-time indexing and query processing.

REFERENCES
[1] H. Abdelhaq, C. Sengstock, and M. Gertz. Eventweet: Online Localized Event

Detection from Twitter. VLDB, 2013.
[2] R. Ahuja, N. Armenatzoglou, D. Papadias, and G. J. Fakas. Geo-social Keyword

Search. In SSTD, 2015.
[3] A. Almaslukh and A. Magdy. Evaluating Spatial-keyword Queries on Streaming

Data. In SIGSPATIAL, 2018.
[4] W. G. Aref and H. Samet. Efficient Processing of Window Queries in the Pyramid

Data Structure. In SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, 1990.

[5] N. Armenatzoglou, R. Ahuja, and D. Papadias. Geo-social Ranking: Functions
and Query Processing. VLDB Journal, 2015.

[6] N. Armenatzoglou, S. Papadopoulos, and D. Papadias. A General Gramework for
Geo-social Query Processing. VLDB, 2013.

[7] J. Bao, M. F. Mokbel, and C.-Y. Chow. Geofeed: A Location Aware News Feed
System. In ICDE, 2012.

[8] J. Bao, Y. Zheng, and M. F. Mokbel. Location-based and Preference-aware Rec-
ommendation using Sparse Geo-social Networking Data. In GIS, 2012.

[9] C. Budak, T. Georgiou, D. Agrawal, and A. El Abbadi. Geoscope: Online Detection
of Geo-correlated Information Trends in Social Networks. VLDB, 2013.

[10] J. Chae, D. Thom, H. Bosch, Y. Jang, R. Maciejewski, D. S. Ebert, and T. Ertl.
Spatiotemporal Social Media Analytics for Abnormal Event Detection and Exam-
ination Using Seasonal-trend Decomposition. In IEEE VAST, 2012.

[11] L. Chen, G. Cong, X. Cao, and K.-L. Tan. Temporal Spatial-keyword Top-k
Publish/Subscribe. In ICDE, 2015.

[12] G. Cong, C. S. Jensen, and D. Wu. Efficient Retrieval of the Top-k Most Relevant
Spatial Web Objects. VLDB, 2009.

[13] T. Emrich, M. Franzke, N. Mamoulis, M. Renz, and A. Züfle. Geo-social Skyline
Queries. In DASFAA, 2014.

[14] The Top 20 Valuable Facebook Statistics. https://zephoria.com/top-15-valuable-
facebook-statistics/, 2019. May 2019.

[15] W. Feng, C. Zhang, W. Zhang, J. Han, J. Wang, C. Aggarwal, and J. Huang.
STREAMCUBE: Hierarchical Spatio-temporal Hashtag Clustering for Event Ex-
ploration over the Twitter Stream. In ICDE, 2015.

[16] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsioutsiouliklis. Discov-
ering Geographical Topics in the Twitter Stream. InWWW, 2012.

[17] D. Hristova, M. J. Williams, M. Musolesi, P. Panzarasa, and C. Mascolo. Measuring
Urban Social Diversity Using Interconnected Geo-social Networks. In WWW,
2016.

[18] Q. Huang and Y. Liu. On Geo-social Network Services. In 2009 17th International
Conference on Geoinformatics, 2009.

[19] Internet Live Stats 2019. http://internetlivestats.com/, 2019. May 2019.
[20] J. Jiang, H. Lu, B. Yang, and B. Cui. Finding Top-k Local Users in Geo-tagged

Social Media Data. In ICDE, 2015.
[21] R. Lee and K. Sumiya. Measuring Geographical Regularities of Crowd Behaviors

for Twitter-based Geo-social Event Detection. In SIGSPATIAL LSBN Workshop,
2010.

[22] Y. Li, Z. Bao, G. Li, and K.-L. Tan. Real Time Personalized Search on Social
Networks. In ICDE, 2015.

[23] Y. Li, R. Chen, J. Xu, Q. Huang, H. Hu, and B. Choi. Geo-social k-cover Group
Queries for Collaborative Spatial Computing. TKDE, 2015.

[24] W. Liu, W. Sun, C. Chen, Y. Huang, Y. Jing, and K. Chen. Circle of Friend Query
in Geo-social Networks. In DASFAA, 2012.

[25] W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xing. Discovering Spatio-temporal
Causal Interactions in Traffic Data Streams. In SIGKDD, 2011.

[26] A. Magdy, L. Alarabi, S. Al-Harthi, M. Musleh, T. M. Ghanem, S. Ghani, and
M. F. Mokbel. Taghreed: A System for Querying, Analyzing, and Visualizing
Geotagged Microblogs. In SIGSPATIAL, 2014.

[27] A. Magdy, R. Alghamdi, and M. F. Mokbel. On Main-memory Flushing in Mi-
croblogs Data Management Systems. In ICDE, 2016.

[28] A. Magdy, M. F. Mokbel, S. Elnikety, S. Nath, and Y. He. Mercury: A Memory-
constrained Spatio-temporal Real-time Search on Microblogs. In ICDE, 2014.

[29] A. R. Mahmood, A. M. Aly, and W. G. Aref. FAST: Frequency-Aware Indexing for
Spatio-Textual Data Streams. In ICDE, 2018.

[30] S. Nishio, D. Amagata, and T. Hara. Geo-Social Keyword Top-k Data Monitoring
over Sliding Window. In DEXA, 2017.

[31] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake Shakes Twitter Users: Real-time
Event Detection by Social Sensors. InWWW, 2010.

[32] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and J. Sperling.
TwitterStand: News in Tweets. In SIGSPATIAL, 2009.

[33] A. Sohail, M. A. Cheema, and D. Taniar. Social-Aware Spatial Top-k and Skyline
Queries. The Computer Journal, 2018.

[34] A. Sohail, G. Murtaza, and D. Taniar. Retrieving Top-k Famous Places in Location-
based Social Networks. In Australasian Database Conference, 2016.

[35] P. Symeonidis, A. Papadimitriou, Y. Manolopoulos, P. Senkul, and I. Toroslu.
Geo-social Recommendations Based on Incremental Tensor Reduction and Local
Path Traversal. In SIGSPATIAL International Workshop on Location-Based Social
Networks, 2011.

[36] Twitter by the Numbers: Stats, Demographics & Fun Facts.
https://www.omnicoreagency.com/twitter-statistics/, 2019.

[37] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang. Ap-tree: Efficiently Support
Continuous Spatial-keyword Queries over Stream. In ICDE, 2015.

[38] H. Wei, J. Sankaranarayanan, and H. Samet. Enhancing Local Live Tweet Stream
to Detect News. In SIGSPATIAL LENS Workshop, 2018.

[39] D. Wu, Y. Li, B. Choi, and J. Xu. Social-aware Top-k Spatial Keyword Search. In
MDM, 2014.

[40] D.-N. Yang, C.-Y. Shen, W.-C. Lee, and M.-S. Chen. On Socio-spatial Group Query
for Location-based Social Networks. In SIGKDD, 2012.

[41] H. Yin, Z. Hu, X. Zhou, H. Wang, K. Zheng, Q. V. H. Nguyen, and S. Sadiq.
Discovering Interpretable Geo-social Communities for User Behavior Prediction.
In ICDE, 2016.

[42] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Time-aware Point-of-
Interest recommendation. In SIGIR, 2013.

[43] J.-D. Zhang and C.-Y. Chow. iGSLR: Personalized Geo-social Location Recom-
mendation: a Kernel Density Estimation Approach. In SIGSPATIAL, 2013.

[44] J.-D. Zhang and C.-Y. Chow. GeoSoCa: Exploiting Geographical, Social and
Categorical Correlations for Point-of-Interest Recommendations. In SIGIR, 2015.

[45] J. Zhao, Y. Gao, G. Chen, C. S. Jensen, R. Chen, and D. Cai. Reverse Top-k
Geo-social Keyword Queries in Road Networks. In ICDE, 2017.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Geo-Social Real-time Indexing
	4.1 Indexing Framework
	4.2 SSQ Index
	4.3 Baseline Indexes

	5 Query Processing
	5.1 Query Processing Framework
	5.2 SSTRQ Query Processing
	5.3 SSTkQ Query Processing

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Indexing Scalability
	6.3 Memory Consumption
	6.4 Query Evaluation

	7 Conclusion
	References

